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It is of great practical interest to develop methods for modeling mathematically the 
processes occurring when fossil fuels are burned in combustion chambers. In the first works 
in this direction, performed at the beginning of the 1970's, attention was concentrated 
primarily on the analysis of gas combustion chambers, which can be described on the basis 
of comparatively simple physical schemes. Now, computers make it possible, in principle, to 
model boiler plants operating on pulverized coal. The main difficulty in the formalization 
of the combustion and heat and mass transfer processes in combustion chambers of this type 
stems from the fact that the presence of a dispersed (solid) phase and the interaction of 
this phase with a gaseous medium must be taken into account adequately. 

There exist two alternative methods for describing the dispersed phase. The first 
method, Lagrange's method, is based on the calculation of individual trajectories of parti- 
cles having different initial coordinates and velocities. The back effect on the carrying 
phase is taken into account through corresponding source terms, which determine the inter- 
phase transfer of mass, momentum, and energy. This method, described systematically in 
[i], has been extended to a wide class of two-phase flows. Examples of the applications of 
this method to the problems under consideration are in the work [2-4]. The computing re- 
sources required increase significantly when any attempt was made to take into account, on the 
basis of this approach, the stochastic character of the motion of finely dispersed fractions [5], 
since a quite representative ensemble of particles must be introduced in order to obtain the 
statistical information. 

The second (Eulerian) approach is based on the continuous representation of an ensemble 
of particles and therefore make it possible to use the same numerical algorithms for both 
dispersed and carrying phases. However two fluid models [6] have not found applications in 
calculations of combustion chambers because the number of equations required increases sig- 
nificantly. In the existing publications [7, 8], the analysis is limited to equations of 
the diffusion type and the motion of the particles is identified with propagation of inertia- 
less impurity in turbulent flows. 

In the present paper we develop a model that makes it possible to take into account 
inertial effects together with convective transport and diffusion. The equations describing 
particle transport, under the assumption that the deviations of the particle velocities 
from the gas velocity is small, reduce to a single equation for the concentration. 

i. The motion of a gas-dispersion system is described, on the basis of the theory of 
mutually interpenetrating media [9], taking into account the combustion of the particles, 
by the following equations: 

OPlU i OD1UiU ~ 

Ot Ox k 

O~Vi 
Ot 

op~ o01uk • (1.1)  
Ot + Ox~ - -  

aq) Oq~Vh • (1.2) 
07 -t- Ox~ P2" 

Op OOih 
= - -  az--~ + ~ + 9~gi - -  9z(~Fi - -  • (1.3) 

o,pviv h • 
+ 0*---7- ' ~ ( g ~ + & ) - -  0--7" ( i . 4 )  

Moscow. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 2, pp. 116-122, 
March-April, 1992. Original article submitted October 17, 1989; revision submitted January 
30, 1991. 

0021-8944/92/3302-0257512.50 �9 1992 Plenum Publishing Corporation 257 



1 a 

/////////// 
/ 

/ r /",  
r 
/ 

i i 

/ / / / / / / / /  

Fig. i 

b l 

Here ~ is the volume concentration of the dispersed phase (~ << i); Pl and P2 = const and U i 
and V i are the density and components of the velocity vector, respectively, of the gas and 
solid phases; p is the pressure; oik is the viscous stress tensor; g is the acceleration 
of gravity; and ~'\is the combustion velocity of the particles. Since p2 >> p~, the acceler- 
ation of the particles due to interphase interaction is determined only by the aerodynamic 
resistance force Fi = (Ui  L- Vi)/T; T = p f l 2 / t 8 p l v  is the dynamic relaxation time in the case of 
Stokes flow past a particle; d is the effective diameter of the particles; and v is the 
kinematic viscosity. 

The equation of motion for the flow as a whole is obtained from Eqs. (1.3) and (1.4): 
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We now average, by Favre's method [i0], over realizations of the turbulent process using 
as the weight factors Pl for the velocity of the gas phase and ~ for the solid phase. Equa- 
tions (i.i), (1.2), (1.4), and (1.5) assume the following form: 
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In order to expand the correlations \~u~/I and \vWk/ we specify the two-dimensional 

correlation function for a homogeneous stationary field of turbulent pulsations [ii]: 
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where H is the Heaviside function and T is the time scale of the energy storing vortices. 
Then, analysis of the motion of a particle in a Gaussian random field gives [12] 

z '\ ~ , ,\a<~>, , , , , 

where the coefficient f = i -- exp(--T/m) characterizes the degree to which the solid phase 
is entrained into the pulsational motion of the gas. 

We determine the total flux of the solid phase with the help of Eqs. (1.7) and (1.8): 

<r <VO <r <UO ~ / ' '\ a <m> + = -- s \uiuk/ ox---~ 

+ x<m> g~ az~ <Vk> ax h at p--$ ] '  

(i.lo) 

which, besides transfer with the average velocity of the carrying phase and turbulent diffu- 
sion (Dm = T<u~u~> is the diffusion tensor), includes an additional convective term, which 
is proportional to m and takes into account a number of inertial effects. Thus, even in the 
absence of a concentration gradient T the velocity of the solid phase differs from the 
gas velocity. The average slipping of phases, as follows from Eq. (I.I0), is caused by the 
action of gravity, turbulent migration of particles from regions with high degree of' turbu- 
lence into regions with a low degree of turbulence and inertial transport owing to deviation 
of particle trajectories from the gas trajectories as the gas trajectories become curved. 
The next to last term in parentheses is related with the existence of a finite velocity of 
propagation of disturbances in the dispersed phase ci = /Dii/~. Substituting Eq. (1.I0) 
into Eq. (1.7) and retaining terms of only zeroth and first order in r, w~ have for the 
stationary flow 
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Equation (i.ii) is valid for relatively small particles m < L/AU, where L is the 
characteristic size of the flow region and AU is a measure of the change in velocity over 
a distance of the order of L. 

(i.ii) 
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The turbulent diffusion tensor Dik does not depend on the particle size. This result 
ceases to be valid only for very large particles, whose diffusional transport is a effected 
by the average slipping [13]. Neglecting effects due to nongradient diffusion, we find 

Bib = 261kkT/3 (k = <u~u~>/2 is the kinetic energy of turbulence. On the other hand, the turbu- 
lent diffusion coefficient is determined in terms of the turbulent viscosity and the turbu- 
lent Schmidt number of an inertialess impurity as follows: D = vT/ScT. According to Kolmo- 
gorov's hypothesis vT = CDk2/e, where e is the rate of dissipation of turbulent energy and 
CD is a constant of the turbulence model. Hence we obtain an expression for the turbulence 
time scale T = (3C~/2S%) • 

Since in the applications under consideration the mass concentration of the solid 
phase is significantly lower than that of the gas phase, we include in the momentum balance 
equation of the two-phase system (1.9) only the pulsational slipping of the phases and we 
neglect the average slipping: 
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The standard k--e model of turbulence is employed to determine the one-point correlations 
of the velocity pulsations of the carrying phase [14]. 

2. Questions concerning the interaction of pulverized coal and the mineral part of the 
fuel with the combustor surfaces were studied in [3, 4] in the Lagrangian representation. 
In the present paper we study the aerodynamic aspect of the scaling problem. According to 
[12, 15], the particle flux onto the wall is determined by turbulent pulsations of particles 
in a direction perpendicular to the surface: 
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where X is the probability that a particle recoils and returns into the flow. 

The condition �9 < L/AU under which the analysis performed is valid can break down in 
zones near the walls, where the friction velocity u, and the distance y up to the wall 
appear as natural scales. As a consequence, the average slipping increases strongly and 
the diffusion coefficient and energy of pulsational motion of the particles deviate from 
the values obtained in the homogeneous-turbulence approximation. This difficulty can be 
overcome by the method, proposed in [16], of transferring the boundary condition to a 
distance au,~ from the wall, proportional to the free path of the particle (the constant 
a is set equal to 0.5). Then we obtain from the solution of Eq. (i.ii) for plane-parallel 
flow/with the boundary condition (2.1) a relation between Jw and the average concentration 
<~)0~ in the region y+ = yu,/9 = 30-100. Analysis of the computational results for 
~X~ {0; i} gives 
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where ~+ = Tully. 

This redefinition of the boundary condition can be incorporated well into the structure 
of conservative difference schemes. In particular, it has the same form as the boundary 
conditions employed in the method of wall functions [17]. The calculations of deposition 
in a circular pipe, performed using Eq. (2.2), agree well with the experimental data col- 
lected in [18]. The effect of the parameter (i -- X) on the rate of deposition is not 
multiplicative and requires further detailed analysis. In addition, it is necessary to 
take into account additional deposition on the horizontal surfaces, occurring with the 
free-fall velocity ~g, since in the gravitational field even totally reflecting surfaces, 
which are studied together with the gas layer adjacent to them, have an effective absorpti- 
vity. 

3. Stationary isothermal single- and two-phase flows were calculated using Eqs. (1.6), 
(i.ii), and (1.12), supplemented by the standard model of turbulence for a rectangular 
channel, shown in scale in Fig. i. Flows with this geometry, simulating in a simplified 
form a combustion chamber, were investigated experimentally in [19] on a model of width 
0.162 m and are two-dimensional. 

The equations were approximated on a "checkerboard" grid using the control-vol~e 
method [20]. Since the diffusion of the particles occurs against background motion with 
a velocity independent of the distribution (~) and different from the average velocity of the 
carrying phase, convective transport of the solid impurity through the face of the control 
volume also includes an inertial correction. This approximation method is more accurate 
than approximating the inertial term by a source, though it does increase somewhat the 
complexity of the computational algorithm. The profile between nodes was interpolated 
with a polynomial [20]. The main idea incorporated in the SIMPLE algorithm [21], employed 
in the present work to determine the pressure field, is the introduction of appropriate 
corrections, at each iteration, to the pressure which make it possible to satisfy the equa- 
tion of continuity. The velocity field is refined on the basis of the computed corrections. 

The boundary conditions at the entrance were prescribed by uniform profiles. A "soft" 
boundary condition, according to which the second derivative along the longitudinal coordi- 
nate vanishes for all quantities, with the exception of the transverse component of the 
velocity, was imposed at the exit. The transverse component of the velocity was assumed 
to be equal to zero at both the entrance and exit. The apparatus of wall functions [17], 
which take into account the behavior of aerodynamic fields near the wall, was used to de- 
termine the flow characteristics near the boundaries. The particle flux onto the chamber 
wall was related to the concentration in the first corner by means of the relation (2.2). 

Two different types of flows [19], shown in Fig. I, arise in the case of unilateral 
entry. The flow patterns shown were obtained with a Reynolds number of 3.3.104 , determined 
according to the width of the nozzle and the velocity at the entrance. The lines 1-6 of 
the stream function, normalized to the total flow rate, were calculated with a step of 
0.5 between the curves, starting with the value --0.5. For small distances between the 
bottom and the edge of the nozzle h = 0.03 m (Fig. la), the ejection of the jet, giving 
rise to a low-pressure region, causes the jet to become attached to the bottom (Coanda 
effect). The position of the bottom strongly affects the character of the flow at the 
bottom of the channel. Increasing h, leaving unchanged the other geometric dimensions 
of the channel, shifts the position of the point of attachment to the left and for some 
value of h it jumps abruptly onto the opposite wall. The transition from one type of 
flow to another, as the calculation showed, occurs at h = 0.05 m. The streamlines in 
Fig. Ib were obtained with h = 0.065 m. Figure 2 shows the dependence of the bottom pres- 
sure p on the distance x from the right-hand wall. The experimental results were taken 
from [19] (lines 1-3 for h = 0.02, 0.029, and 0.065 m). The pressure peak in the first 
two cases is associated with the attachment of the jet near the center of the bottom. 
The data presented indicate that the computational results for quite complicated two- 
dimensional single-phase flows, characterized by the presence of circulation zones, turn- 
ing points of the flow, etc., agree qualitatively and quantitatively with the experimental 
results. 
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As far as two-phase flows are concerned, it should be noted that in real power plants 
the flow velocity is such that the Reynolds number is approximately an order of magnitude 
higher than in the example studied. Nevertheless the overall structure of the aerodynamic 
fields is identical. For bilateral entry, because the oppositely directed jets interact 
with one another the character of the flow is not the same as in the case of unilateral 
entry. As an example,iFig. 3 shows the velocity field in a model configuration, keeping 
the same proportion as in Fig. ib, but with a Reynolds number of 3.3.102 , chosen according 
to the input parameters. The velocity at the exit from the burners was equal to 18 m/sec 
and the height of the combustion chamber was equal to 24 m. A stationary point of disloca- 
tion of the jet (saddle point for streamlines), below which a descending flow is formed, 
forms at the bottom of the chamber. Circulation zones are present above and below each 
burner zone, and in addition the left-hand upper zone occupies a larger fraction of the 
volume of the combustion chamber. 

The distribution of particles with diameter d = 4.10 -5 m for low concentrations with 
the given state parameters and slagged burners surfaces (X = 0) is shown in Fig. 4. The 
density ratio p2/pl was assumed to be equal to 1670; the lines 1-5 of constant concentra- 
tion, normalized to the input value, correspond to 0.8, 0.7, 0.6, 0.5, and 0.4. The highest 
values are observed near the burners and the decrease downstream is associated with pre- 
cipitation of particles onto the wall. Concentration "tongues" indicating accumulation 
of particles predominantly in the flow-through part of the combustion chamber, are charac- 
teristic. Curves of the precipitation velocity W were constructed along the perimeter of the 
chamber. Since the calculations were performed for complete absorption, corresponding to 
ash particles with temperatures above the temperature of the plastic state and attaching 
completely to the walls, the profiles shown are majorizing profiles and permit judging only 
the maximum possible slagging velocity. The highest deposition velocity is achieved in 
sections located somewhat above and below the burner zones as well as at the bottom of the 
combustion chamber, where only 40% of the deposition is caused by gravitational settling, 
and the rest of the deposition must be attributed to turbulent transfer. Maximum deposi- 
tion along the bottom occurs in the region of the downward flow. A slag-free zone, forming 
as a result of the decrease in u,, is formed at the top of the combustion chamber. 

Figure 5 shows curves of the total (along the perimeter) flow of precipitating parti- 
cles K, scaled to the total flow rate of the dispersed phase, as a function of the diameter 
of the particles (curves 3 and 6 were obtained for the starting velocity field in Fig. 4 
and curves 2 and 5 were obtained for the same input velocities but for the case when the 
fuel--air mixture was injected only from the right-hand side). The curves presented cor- 
respond to X = 1 (4-6), when particle precipitation is caused only by gravity, and X = 0 
(1-3). Both itypes of boundary conditions lead to the same result: deposition with uni- 
lateral entry is more intensive because the flame is thrown onto the furnace screens (Fig. 
la). The integral deposition coefficient K reaches even higher values when the jet is 
attached to the bottom of the combustion chamber (Fig. Ib), in spite of the fact that the 
overall perimeter is somewhat smaller (curves i, 4). In practice, this flow regime has 
an unfavorable effect on heat transfer and combustion processes. The difference between 
the curves referring to different values of X makes it possible to judge the fraction of 
the particles precipitating onto the wall due to turbulent mechanism of deposition. 

Thus the method examined in this paper makes it possible to predict the formation of 
deposits of finely dispersed ash particles on the combustor surfaces. 
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